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Abstract

A Hamilton cycle in a digraph is a cycle that passes through all the vertices, where all the
arcs are oriented in the same direction. The problem of finding Hamilton cycles in directed
graphs is well studied and is known to be hard. One of the main reasons for this, is that there
is no general tool for finding Hamilton cycles in directed graphs comparable to the so called
Posá ‘rotation-extension’ technique for the undirected analogue. Let D(n, p) denote the random
digraph on vertex set [n], obtained by adding each directed edge independently with probability
p. Here we present a general and a very simple method, using known results, to attack problems
of packing and counting Hamilton cycles in random directed graphs, for every edge-probability
p > logC(n)/n. Our results are asymptotically optimal with respect to all parameters and apply
equally well to the undirected case.

1 Introduction

A Hamilton cycle in a graph or a directed graph is a cycle passing through every vertex of the

graph exactly once, and a graph is Hamiltonian if it contains a Hamilton cycle. Hamiltonicity is one

of the most central notions in graph theory, and has been intensively studied by numerous researchers

in the last couple of decades.

The decision problem of whether a given graph contains a Hamilton cycle is known to be NP-hard

and is one of Karp’s list of 21 NP-hard problems [23]. Therefore, it is important to find general

sufficient conditions for Hamiltonicity and indeed, many interesting results were obtained in this

direction.

Once Hamiltonicity has been established for a graph there are many questions of further interest.

For example, the following are natural questions:

• Let G be a graph with minimum degree δ(G). Is it possible to find roughly δ(G)/2 edge-disjoint

Hamilton cycles? (This problem is referred to as the packing problem.)
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• Let ∆(G) denote the maximum degree of G. Is it possible to find roughly ∆(G)/2 Hamilton

cycles for which every edge e ∈ E(G) appears in at least one of these cycles? (This problem is

referred to as the covering problem.)

• How many distinct Hamilton cycles does a given graph have? (This problem is referred to as

the counting problem.)

All of the above questions have a long history and many results are known. Let us define G(n, p)

to be the probability space of graphs on a vertex set [n] := {1, . . . , n}, such that each possible (un-

ordered) pair xy of elements of [n] appears as an edge independently with probability p. We say that

a graph G ∼ G(n, p) satisfies a property P of graphs with high probability (w.h.p.) if the probability

that G satisfies P tends to 1 as n tends to infinity.

Packing. The question of packing in the probabilistic setting was firstly discussed by Bollobás and

Frieze in the 80’s. They showed in [4] that if {Gi}
(n2)
i=0 is a random graph process on [n], where G0 is

the empty graph and Gi is obtained from Gi−1 by adjoining a non-edge of Gi−1 uniformly at random,

as soon as Gi has minimum degree k (where k is a fixed integer), it has bk/2c edge-disjoint Hamilton

cycles plus a disjoint perfect matching if k is odd. This result generalizes an earlier result of Bollobás

[3] who proved (among other things) that for p = lnn+ln lnn+ω(1)
n , a typical graph G ∼ G(n, p) is

Hamiltonian. Note that this value of p is optimal in the sense that for p = lnn+ln lnn−ω(1)
n , it is

known that w.h.p. a graph G ∼ G(n, p) satisfies δ(G) ≤ 1, and therefore is not Hamiltonian. Later

on, Frieze and Krivelevich showed in [14] that for p = (1 + o(1)) lnnn , a graph G ∼ G(n, p) w.h.p.

contains bδ(G)/2c edge-disjoint Hamilton cycles (in fact, this was proven only using pseudo-random

hypothesis), which has afterwards been improved by Ben-Shimon, Krivelevich and Sudakov in [2] to

p ≤ 1.02 lnn
n . We remark that in this regime of p, w.h.p. G ∼ G(n, p) is quite far from being regular.

As the culmination of a long line of research Knox, Kühn and Osthus [24], Krivelevich and Samotij

[26] and Kühn and Osthus [28] completely solved this question for the entire range of p.

For the non-random case, it is worth mentioning a recent remarkable result due to Csaba, Kühn,

Lo, Osthus and Treglown [5] which proved that for large enough n and d ≥ bn/2c, every d-regular

graph on n vertices contains bd/2c edge-disjoint Hamilton cycles and one disjoint perfect matching

in case d is odd. This result settles a long standing problem due to Nash-Williams [31] for large

graphs.

Covering. The problem of covering the edges of a random graph was firstly studied in [18] by

Glebov, Krivelevich and Szabó. It is shown that for p ≥ n−1+ε, the edges of a typical G ∼ G(n, p)

can be covered by (1 + o(1))np/2 edge-disjoint Hamilton cycles. Furthermore they proved analogous

results also in the pseudo-random setting. In [19], Hefetz, Lapinskas, Kühn and Osthus improved it

by showing that for some C > 0 and logC(n)
n ≤ p ≤ 1−n−1/8, one can cover all the edges of a typical

graph G ∼ G(n, p) with d∆(G)/2e Hamilton cycles.

Counting. Given a graph G, let h(G) denote the number of distinct Hamilton cycles in G.

Strengthening the classical theorem of Dirac from the 50’s [8], Sárközy, Selkow and Szemerédi [33]

proved that every graph G on n vertices with minimum degree at least n/2 contains not only one

but at least cnn! Hamilton cycles for some small positive constant c. They also conjectured that this

c could be improved to 1/2− o(1). This was later proven by Cuckler and Kahn [7]. In fact, Cuckler

and Kahn proved a stronger result: every graph G on n vertices with minimum degree δ(G) ≥ n/2
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has h(G) ≥
(
δ(G)
e

)n
(1 − o(1))n. A typical random graph G ∼ G(n, p) with p > 1/2 shows that

this estimate is sharp (up to the (1 − o(1))n factor). Indeed, in this case with high probability

δ(G) = pn+ o(n) and the expected number of Hamilton cycles is pn(n− 1)! < (pn/e)n.

In the random/pseudo-random setting, building on ideas of Krivelevich [25], in [17] Glebov and

Krivelevich showed that for p ≥ lnn+ln lnn+ω(1)
n and for a typical G ∼ G(n, p) we have h(G) =

(1− o(1))nn!pn. That is, the number of Hamilton cycles is, up to a sub-exponential factor, concen-

trated around its mean. For larger values of p, Janson showed [21] that the distribution of h(G) is

log-normal, for G ∼ G(n, p) with p = ω(n−1/2).

In this paper we treat the three of these problems in the random directed setting. A directed

graph (or digraph) is a pair D = (V,E) with a set of vertices V and a set of arcs E, where each arc

is an ordered pair of elements of V . A directed graph is called oriented, if for every pair of vertices

u, v ∈ V , at most one of the directed edges −→uv or −→vu appears in the graph. A tournament is an

oriented complete graph. A Hamilton cycle in a digraph is a cycle going through all the vertices

exactly once, where all the arcs are oriented in the same direction in a cyclic order. Given a directed

graph D and a vertex v ∈ V , we let d+D(v) and d−D(v) denote its out- and in- degree in D.

Let D(n, p) be the probability space consisting of all directed graphs on vertex set [n] in which

each possible arc is added with probability p independently at random. The problem of determining

the range of values of p for which a typical graph D ∼ D(n, p) is Hamiltonian goes back to the early

80’s, where McDiarmid [30] showed, among other things, that an elegant coupling argument gives

the inequality

Pr[G ∼ G(n, p) is Hamiltonian] ≤ Pr[D ∼ D(n, p) is Hamiltonian].

Combined with the result of Bollobás [3] it follows that a typical D ∼ D(n, p) is Hamiltonian for

p ≥ lnn+ln lnn+ω(1)
n . Later on, Frieze showed in [16] that the same conclusion holds for p ≥ lnn+ω(1)

n .

The result of Frieze is optimal in the sense that for p = lnn−ω(1)
n , it is not difficult to see that

for a typical D ∼ D(n, p) we have minv∈V {δ+(v), δ−(v)} = 0 and therefore D is not Hamiltonian.

Robustness of Hamilton cycles in random digraphs was studied by Hefetz, Steger and Sudakov in

[20] and by Ferber, Nenadov, Noever, Peter and Skorić in [13].

1.1 Our results

While in general/random/pseudo-random graphs there are many known results, much less is

known about the problems of counting, packing and covering in the directed setting. The main

difficulty is that in this setting the so called Posá rotation-extension technique (see [32]) does not

work in its simplest form.

In this paper we present a simple method to attack and approximately solve all the above men-

tioned problems in random/pseudo-random directed graphs, with an optimal (up to a polylog(n)

factor) density. Our method is also applicable in the undirected setting, and therefore reproves

many of the above mentioned results in a simpler way.

The problem of packing Hamilton cycles in digraphs goes back to the 70’s. Tilson [36] showed

that every complete digraph has a Hamilton decomposition. Recently, a remarkable result of Kühn

and Osthus (see [27]) proves that for any regular orientation of a sufficiently dense graph one can find

a Hamilton decomposition. In the case of a random directed graph, not much is known regarding

3



packing Hamilton cycles. Our first result proves the existence of (1− o(1))np edge-disjoint Hamilton

cycles in D(n, p).

Theorem 1.1. For p = ω
(
log4 n
n

)
, w.h.p. the digraph D ∼ D(n, p) has (1 − o(1))np edge-disjoint

Hamilton cycles.

We also show that in random directed graphs one can cover all the edges by not too many cycles.

Theorem 1.2. Let p = ω
(
log2 n
n

)
. Then, a digraph D ∼ D(n, p) w.h.p. can be covered with (1 +

o(1))np directed Hamilton cycles.

The problem of counting Hamilton cycles in digraphs was already studied in the early 70’s by

Wright in [38]. However, counting Hamilton cycles in tournaments is an even older problem which

goes back to one of the first applications of the probabilistic method by Szele [34]. He proved

that there are tournaments on n vertices with at least (n − 1)!/2n Hamilton cycles. Thomassen

[35] conjectured that in fact every regular tournament contains at least n(1−o(1))n Hamilton cycles.

This conjecture was solved by Cuckler [6] who proved that every regular tournament on n vertices

contains at least n!
(2+o(1))n Hamilton cycles. Ferber, Krivelevich and Sudakov [11] later extended

Cuckler’s result for every nearly cn-regular oriented graph for c > 3/8. Here, we count the number

of Hamilton cycles in random directed graphs and improve a result of Frieze and Suen from [15]. We

show that the number of directed Hamilton cycles in such random graphs is concentrated (up to a

sub-exponential factor) around its mean.

Theorem 1.3. Let p = ω
(
log2 n
n

)
. Then, a digraph D ∼ D(n, p) w.h.p. contains (1 ± o(1))nn!pn

directed Hamilton cycles.

Finally, the same proof method can be used to prove analogous results when instead working

with pseudo-random graphs. We direct the reader to Definition 6.1 in Section 6.1 for the notion of

pseudo-randomness used here. The following theorems show that at a cost of an additional polylogn

factor in the density we obtain analogues of Theorem 1.1, 1.2, 1.3 for pseudo-random digraphs. Below

we will write oλ(1) for some quantity tending to 0 as λ→ 0.

Theorem 1.4. Let D be a (n, λ, p) pseudo-random digraph where p = ω
(
log14 n
n

)
. Then D contains

(1− oλ(1))np edge-disjoint Hamilton cycles.

Theorem 1.5. Let D be a (n, λ, p) pseudo-random digraph where p = ω
(
log14 n
n

)
. Then D can be

covered with (1 + oλ(1))np directed Hamilton cycles.

Theorem 1.6. Let D be a (n, λ, p) pseudo-random digraph where p = ω
(
log14 n
n

)
. Then D can be

contains (1− oλ(1))nn!pn directed Hamilton cycles.

We have only included the proof of Theorem 1.4 which modifies the proof of Theorem 1.1 to the

pseudo-random setting. The other results can be proven in a similar manner (these other proofs are

in fact slightly easier).

Remark 1.7. We also draw attention to the fact that all of our proofs also apply to G(n, p) with the

same probability thresholds as in Theorem 1.1, 1.2 and 1.3. Although all these results are known in

G(n, p) (and in fact even much more), our approach provides us with short and elegant proofs. For

convenience, we state the exact statements which follow from our proofs:
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• For p = ω
( log4 n

n

)
our approach gives that G ∼ G(n, p) whp contains (1−o(1))np/2 edge disjoint

Hamitlon cycles. As mentioned in the packing section above, here it is known that for all p

whp G ∼ G(n, p) contains bδ(G)/2c edge disjoint Hamilton cycles (see [24], [26] and [28]).

• For p = ω
( log2 n

n

)
our approach gives that G ∼ G(n, p) whp contains (1 + o(1))np/2 Hamilton

cycles covering all edges of G. As mentioned in the covering section above, here it is known

that there is some constant C > 0 such that for logC n
n ≤ p ≤ 1 − n−1/18 whp G ∼ G(n, p) has

an edge covering with d∆(G)/2e Hamilton cycles (see [19]).

• For p = ω
( log2 n

n

)
our approach gives that G ∼ G(n, p) whp contains (1± o(1))nn!pn Hamilton

cycles. As mentioned in the counting section above, here it is known that such a bound already

applies for p > logn+log logn+ω(1)
n .

1.2 Notation and terminology

We denote by Dn the complete directed graph on n vertices (that is, all the possible n(n− 1) arcs

appear), and by Dn,m the complete bipartite digraph with parts [n] and [m]. Given a directed graph

F and a vector p̄ ∈ (0, 1]E(F ), we let D(F, p̄) denote the probability space of sub-digraphs D of F ,

where for each arc e ∈ E(F ), we add e into E(D) with probability pe, independently at random. In

the special case where pe = p for all e, we simply denote it by D(F, p). In the case where F = Dn,

we write D(n, p) and in the case F = Dn,m we write D(n,m, p). Given a digraph D and two sets

X,Y ⊂ V (D) we write ED(X,Y ) = {−→xy ∈ E(D) : x ∈ X, y ∈ Y }. Also let eD(X,Y ) = |ED(X,Y )|
and eD(X) = |ED(X,X)|. We will also occasionally make use of the same notation for graphs G,

i.e. eG(X,Y ). For a vertex v we denote N+
D (v) = ED({v}, V (D)) and N−D (v) = ED(V (D), {v}). Let

d+D(v) = |N+
D (v)| and d−D(v) = |N−D (v)|. Lastly, we write x ∈ a± b to mean that x is in the interval

[a− b, a+ b].

2 Overview and auxiliary results

2.1 Proof overview

Our aim in this subsection is to provide an overview of the proofs of Theorems 1.1, 1.2 and 1.3. In

particular, we hope to highlight the similarities and differences which occur for the packing, counting

and covering problems. To do this, we will first describe an approach to solve similar problems for

a more restricted model of random digraph. We then outline how these results can be used to solve

the corresponding problems for D(n, p).

Suppose that we are given a partition [n] = V0 ∪ V1 ∪ · · · ∪ V`, with |V0| = s and |Vj | = m for all

j ∈ [`] so that n = m`+ s (here s = ω(m) and ` = polylog(n)). Consider the following way to select

random digraph F :

1. For all j ∈ [` − 1], directed edges from Vj and Vj+1 are adjoined to F with probability pin
independently. Let Fj denote this sub-digraph of F ;

2. The directed edges (a) in V0 (b) from V0 to V1 (c) from V` to V0 and (d) from V` to V1 are

adjoined to F with probability pex independently. Let F0 denote this subdigraph of F .
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This selection process gives a distribution on a set of digraphs. We will write F to denote this

distribution, and write F ∼ F to denote a digraph F chosen according to it. We will describe how

to show that if F ∼ F then whp, for appropriate values of pin and pex, we have:

(i)* (1− o(1))mpin edge disjoint Hamilton cycles which contain almost all edges of type 1 in F ;

(ii)* (1 + o(1))mpin Hamilton cycles which cover all edges of type 1 in F ;

(iii)* (1− o(1))n−s(m!)`−1pn−s−min directed Hamilton cycles in F .

To do this, we first expose edges of type 1. above. Using known matching results, for pin =

ω(logC m/m) and ` ≤ m say, it can be shown that whp for every j ∈ [`− 1]:

(i) Fj contains Lpack := (1− o(1))mpin edge disjoint perfect matchings, {M j
i }
Lpack
i=1 ;

(ii) Fj contains Lcov := (1 + o(1))mpin perfect matchings covering all edges of Fj , {M j
i }
Lcov
i=1 ;

(iii) Fj contains (1− o(1))mm!pmin perfect matchings.

Now note that in (i), (ii) and (iii) above, by combining a perfect matching from each Fj for each

j ∈ [`−1] we obtain a collection of m vertex disjoint directed paths from V1 to V`, covering
⋃
j∈[`] Vj .

We refer to such a collection of paths P as a matching path system.

(i) For each i ∈ [Lpack], by combining the disjoint matchings {M j
i }
`−1
j=1 from (i) in this way, we

obtain a matching path system Pi. This gives Lpack edge disjoint matching path systems

P1, . . . ,PLpack .

(ii) For each i ∈ [Lcov], by combining the matchings {M j
i }
`−1
j=1 from (ii) in this way we obtain a

matching path system Pi. This gives Lcov matching path systems P1, . . . ,PLcov , which cover

all edges in the digraphs Fj for j ∈ [`− 1].

(iii) Lastly, by choosing different matching between the partitions from (iii), we have many choices

for how to build our matching path system P. We obtain at least (1−o(1))m`(m!)`−1p
m(`−1)
in ≥

(1− o(1))n(m!)`−1pn−s−min such choices for P.

Now let P = {P1, . . . , Pm} be a fixed matching path system. Assume that each Pi begins at a

vertex si ∈ V1 and terminates at a vertex ti ∈ V`. These vertices are distinct by construction. We

will now describe how to include all paths in P into a directed Hamilton cycle. To do this simply

contract each directed path Pi to single vertex which we also denote by Pi. Now expose the edges

of type 2. above and view them as edges of a random digraph on vertex set Ṽ = V0 ∪ {P1, . . . , Pm}.
Note that the following edges all appear with probability pex:

• All directed edges in V0. These come from edges of type 2. (a) above;

• Directed edges from V0 to {P1, . . . , Pm} and from {P1, . . . , Pm} to V0. These come respectively

from edges of type 2. (b) and (c) above;

• Directed edges within the set {P1, . . . , Pm}. These come from edges of type 2 (d) above. (Here

we may obtain a loop on the vertices Pi, which we simply ignore.)
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As all such edges appear independently, the resulting random digraph is distributed identically to

D(s+m, pex). By known Hamiltonicity result forD(n, p), provided that pex = ω
(
logC(m+ s)/(m+ s)

)
we obtain that this digraph is Hamiltonian with very high probability. However, it is easy to see

that by construction a directed Hamilton cycle in this contracted digraph pulls back to a directed

Hamilton cycle in F , which contains the paths in P as directed subpaths. Thus we have shown how

to turn a single matching path system into a Hamilton cycle.

Now in the case of (ii)*, we can complete each of the matching path systems P1, . . .PLcov into

Hamilton cycles by using edges of type 2. described above. This can also be used to show whp many

of the matching paths systems from (iii)* complete to (distinct) directed Hamilton cycles. However,

to pack the Hamilton cycles in the case of (i)* more care must be taken as we cannot use the same

edges twice. To get around this, we distribute the edges of type 2. to create an individual random

digraph for each Pi. Provided that pex is sufficiently large (and m, ` and s are carefully chosen) each

of these individual random digraphs will be Hamiltonian whp. This completes the description of

(i)*, (ii)* and (iii)* above.

Now our approach for dealing with the packing, covering and counting problems on D(n, p) is to

show that with high probability we can break D ∼ D(n, p) into subdigraphs distributed similarly to

F above. However the type of decomposition chosen is again dependent on the problem at hand.

With the packing it is important that these graphs are edge disjoint. With the covering, it will be

important every edge of D(n, p) appears as an edge of type 1. in one of these digraphs (recall these

were the only edges guaranteed to be covered in (ii)*). The counting argument is less sensitive, and

simply work with many such digraphs. Dependent on the problem, we can apply our strategy above

for F ∼ F to each of these digraphs separately. Combining the resulting Hamilton cycles from either

(i)*, (ii)* or (iii)* in each of these digraphs will then solve the corresponding problem for D(n, p).

2.2 Probabilistic tools

We will need to employ bounds on large deviations of random variables. We will mostly use the

following well-known bound on the lower and the upper tails of the binomial distribution due to

Chernoff (see [1], [22]).

Lemma 2.1 (Chernoff’s inequality). Let X ∼ Bin(n, p) and let µ = E(X). Then

• Pr[X < (1− a)µ] < e−a
2µ/2 for every a > 0;

• Pr[X > (1 + a)µ] < e−a
2µ/3 for every 0 < a < 3/2.

Remark 2.2. The conclusions of Chernoff’s inequality remain the same when X has the hypergeo-

metric distribution (see [22], Theorem 2.10).

We will also find the following bound useful.

Lemma 2.3. Let X ∼ Bin(n, p). Then Pr [X ≥ k] ≤
( enp
k

)k
.

Proof. Just note that

Pr [X ≥ k] ≤
(
n

k

)
pk ≤

(enp
k

)k
.
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2.3 Perfect matchings in bipartite graphs and random bipartite graphs

The following lower bound on the number of perfect matchings in an r-regular bipartite graph

is also known as the Van der Waerden conjecture and has been proven by Egorychev [9] and by

Falikman [10]:

Theorem 2.4. Let G = (A∪B,E) be an r-regular bipartite graph with parts of sizes |A| = |B| = n.

Then, the number of perfect matchings in G is at least
(
r
n

)n
n!.

The following lemma is an easy corollary of the so called Gale-Ryser theorem (see, e.g. [29]).

Lemma 2.5. (Lemma 2.4, [12]) Let G is a random bipartite graph between two vertex sets both of

size n, where edges are chosen independently with probability p = ω(log n/n). Then with probability

1− o(1/n) the graph G contains (1− o(1))np edge disjoint perfect matchings.

2.4 Converting paths into Hamilton cycles

The following definitions will be convenient in our proofs.

Definition 2.6. Suppose that X is a set of size n and that `,m, s are positive integers with n = m`+s.

A sequence V = (V0, V1, . . . , V`) of subsets of X is called an (`, s)-partition of X if

• X = V0 ∪ V1 ∪ . . . ∪ V` is a partition of X, and

• |V0| = s, and

• |Vi| = m for every i ∈ [`].

Definition 2.7. Given an (`, s)-partition V = (V0, V1, . . . , V`) of a set X, let Dn(V) denote the

digraph on vertex set X = [n] consisting of all edges −→uv such that:

1. u ∈ Vj, v ∈ Vj+1 for some j ∈ [`− 1], or

2. u ∈ V0 and v ∈ V0 ∪ V1, or

3. u ∈ V`, v ∈ V0 ∪ V1.

We call edges of type 1. interior edges and call edges of type 2. and 3. exterior edges.

Suppose that we are given two disjoint sets V and W and a digraph D on vertex set V ∪W .

Suppose also that we have m disjoint ordered pairs M = {(wi, xi) : i ∈ [m]} ⊂ W ×W . Then we

define the following auxiliary graph.

Definition 2.8. Let D(M, V ) denote the following auxiliary digraph on vertex set M∪ V where

M = {u1, . . . , um} and each ui refers to the pair (wi, xi). Then given any two vertices v1, v2 ∈ V ,

we have:

• −−→v1v2 is an edge in D(M, V ) if it appears in D;

• −−→v1ui is an edge in D(M, V ) if −−→v1wi is an edge in D;

• −−→uiv1 is an edge in D(M, V ) if −−→xiv1 is an edge in D;

• −−→uiuj is an edge in D(M, V ) if −−→xiwj is an edge in D.

Remark 2.9. Note that if D(M, V ) contains a directed Hamilton cycle and W can be decomposed

into vertex disjoint directed wixi-paths for all i ∈ [m] (paths starting at wi and ending at xi) then D

contains a directed Hamilton cycle.
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3 Counting Hamilton cycles in D(n, p)

In this section we prove Theorem 1.3. The proof of this theorem is relatively simple and contains

most of the ideas for the other main results and therefore serves as a nice warmup.

Proof. We will first prove the upper bound. For this, let XH denote the random variable that counts

the number of Hamilton cycles in D ∼ D(n, p). It is clear that E[XH ] = (n − 1)!pn. By Markov’s

inequality, we therefore have

Pr(XH ≥ (1 + o(1))nn!pn) ≤ E[XH ]

(1 + o(1))nn!pn
= (1− o(1))n = o(1).

Thus XH ≤ (1 + o(1))nn!pn w.h.p..

We now prove the lower bound, i.e. XH ≥ (1 − o(1))nn!pn w.h.p.. Let α := α(n) be a function

tending to infinity arbitrarily slowly with n. We prove the lower bound on XH under the assumption

that p ≥ α2 log2 n/n. Let us take s and ` to be integers where s is roughly n
α logn and ` is roughly

2α log n and there is an integer m with n = `m + s. Also fix a set S ⊆ V (G) of order s and let us

set V ′ = V (D) \ S. The set S will be used to turn collections of vertex disjoint paths into Hamilton

cycles.

To begin, take a fixed (`, s)-partition V = (V0, V1, . . . , V`) with V0 = S. We claim the following:

Claim: Given V as above, taking D ∼ D(n, p), the random digraph D ∩Dn(V) (where Dn(V) is as

in Definition 2.7) contains at least (1− o(1))nm!`−1pm(`−1) distinct Hamilton cycles with probability

1− o(1).

To see this, first expose the interior edges of D∩Dn(V). For each j ∈ [`−1] let Fj := ED(Vj , Vj+1).

Observe that Fj ∼ D(m,m, p). It will be convenient for us to view Fj as a bipartite graph obtained

by ignoring the edge directions. Since p = ω
(
logn
m

)
, by Lemma 2.5 with probability 1 − o(1/n) we

conclude that Fj contains (1− o(1))mp edge-disjoint perfect matchings. Taking a union bound over

all j ∈ [`− 1] we find that whp Fj contains a (1− o(1))mp-regular subgraph for all j ∈ [`− 1].

Apply Theorem 2.4 to each of these subgraphs. This give that for each j ∈ [` − 1] the graph Fj
contains at least (1 − o(1))mm!pm perfect matchings. Combining a perfect matching from each of

the Fj ’s we obtain a family P of m vertex disjoint paths which spans V ′. Let ΛV denote the set of

all such P. From the choices of perfect matchings in each Fj we obtain that whp

|ΛV | ≥ ((1− o(1))mm!pm)`−1 = (1− o(1))n (m!)`−1 pn−s. (1)

Now let P = {P1, . . . , Pm} ∈ ΛV . Let

M = {(ui, vi) ∈ V1 × V` : Pi is a ui − vi directed path}.

Let us consider the auxiliary digraph D(M, V0) as in Definition 2.8. As we expose the exterior edges

of D in Dn(V) it is easy to see that D(M, V0) ∼ D(s + m, p). Furthermore, a Hamilton cycle in

D(M, V0) gives a Hamilton cycle in D by Remark 2.9. However, it is well-known digraphs in D(n, p′)

are Hamiltonian w.h.p. for say p′ > 2 log n/n ([16]). Since

p =
α2 log2 n

n
≥ α log n

s+m
= ω

(
log(s+m)

s+m

)
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we find that D(M, V0) is Hamiltonian w.h.p.. Thus we have shown that

Pr
(
P does not extend to a Hamilton cycle in D ∩Dn(V)

)
= o(1). (2)

Let Λ′V ⊂ ΛV denote the set of P ∈ ΛV which do not extend to a Hamilton cycle in D ∩ Dn(V).

By (2) we have E(|Λ′V |) = o(|ΛV |). Using Markov’s inequality we obtain that |Λ′V | = o(|ΛV |) whp.

Combined with (1) this gives that |ΛV \ Λ′V | ≥ (1 − o(1))n (m!)`−1 pn−s whp. Lastly, to complete

the proof of the claim, note that any two distinct families P,P ′ ∈ ΛV \ Λ′V yield different Hamilton

cycles – indeed, by deleting the vertices of S from the Hamilton cycle it is easy to recover the paths

P. This proves the claim.

Now to complete the proof of the theorem, let Γ denote the set of (`, s)-partitions V with V0 = S

which satisfy the statement of the claim. By Markov’s inequality we have |Γ| ≥ (1−o(1)) (n−s)!
(m!)`

whp.

Since for distinct V,V ′ ∈ Γ the Hamilton cycles in D ∩Dn(V) are all distinct, we find that whp D

contains at least

|Γ|(1− o(1))n (m!)`−1 pn−s ≥ (1− o(1))n
(n− s)!
(m!)`

(m!)`−1pn

= (1− o(1))n
(n− s)!
m!

pn = (1− o(1))nn!pn

distinct Hamilton cycles. The final equality here holds since m < n/α log n gives that m! < en/α and

(n)s ≤ ns = (1 + o(1))n since s = o(n/ log n). This completes the proof of the theorem.

4 Packing Hamilton cycles in D(n, p)

In this section we prove Theorem 1.1. The heart of the argument is contained in the following

lemma.

Lemma 4.1. Let V = (V0, V1, . . . , V`) be an (`, s)-partition of a set X of size n = `m + s. Suppose

that we select a random subdigraph F of Dn(V) as follows:

• include each interior directed edge of Dn(V) independently with probability pin;

• include each exterior directed edge of Dn(V) independently with probability pex.

Then, provided pin = ω(log n/m) and pex = ω(mpin log n/(m+ s)), w.h.p. F contains (1−o(1))mpin
edge-disjoint Hamilton cycles.

Proof. We begin by exposing the interior edges of F . For j ∈ [` − 1] all edges EDn(Vj , Vj+1)

appear in EF (Vj , Vj+1) independently with probability pin. By ignoring the orientations, we can

view EF (Vj , Vj+1) as a bipartite graph. From Lemma 2.5, since pin = ω(logm/m) we find that

w.h.p. for all j ∈ [` − 1] the graph EF (Vj , Vj+1) contains L := (1 − o(1))mpin edge-disjoint perfect

matchings {Mj,k}Lk=1. For each k ∈ [L], combining the edges in the matchings {Mj,k}j∈[`−1] gives

m directed paths, each directed from V1 to V` and covering
⋃`
i=1 Vi. Let Pk,1, . . . , Pk,m denote these

paths and Pk = {Pk,1, . . . , Pk,m}.
Now for each exterior edge e of Dn(V) choose a value h(e) ∈ [L] uniformly at random, all values

chosen independently. Now expose the exterior edges of F and for each i ∈ [L] let Hi denote the

subgraph of F with edge set {e ∈ E(F ) : e exterior with h(e) = i}.
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Claim 4.2. For any k ∈ [L], the digraph Ck := {−→e : −→e is a directed edge of some path in Pk} ∪Hk

contains a directed Hamilton cycle with probability 1− o(1/n).

Note that the proof of the lemma follows from the claim, by taking a union bound over all k ∈ [L].

To prove the claim, let

Mk = {(uk,i, vk,i) ∈ V1 × V` : Pk,i is a directed uk,i − vk,i path}.

By Remark 2.9 it suffices to prove that the auxiliary digraph Ck(Mk, V0) contains a directed Hamilton

cycle. Note that |V (Ck(Mk, V0))| = s+m and that Ck(Mk, V0) ∼ D(s+m, pex/L). Since pex/L =

ω(log n/(s + m)), the digraph Ck(Mk, V0) is Hamiltonian with probability 1 − o(1/n). By Remark

2.9, this completes the proof of the claim, and therefore the lemma.

The following lemma allows us to cover the edges of the complete digraph in a reasonably balanced

way using copies of Dn(V).

Lemma 4.3. Suppose that X is a set of size n and that `,m, s ∈ N satisfying n = m` + s, with

t = ω(` log n), t = ω((n2/s2) log n) and s = o(n) and m = o(s). Let V(1), . . . ,V(t) be a collection of

(`, s)-partitions of X chosen uniformly and independently at random, where V(i) = (V
(i)
0 , . . . , V

(i)
` ).

Then w.h.p. for each pair u, v ∈ X, the directed edge e = −→uv satisfies:

1. |Ae| = (1 + o(1)) t` where Ae :=
{
i ∈ [t] : e is an interior edge of Dn(V(i))

}
.

2. |Be| = (1 + o(1)) s
2t
n2 where Be :=

{
i ∈ [t] : e is an exterior edge of Dn(V(i))

}
.

Proof. Let V(1), . . . ,V(t) be (`, s)-partitions chosen uniformly and independently at random. Given

a fixed directed edge e, the sizes |Ae| and |Be| are binomially distributed on a set t with

E(|Ae|) = (`− 1)
m2

n(n− 1)
t and E(|Be|) =

m2 + 2sm+ s(s− 1)

n(n− 1)
t.

Using that s = o(n) and n = m`+ s this gives that E(|Ae|) = (1 + o(1)) t` and using m = o(s) gives

E(|Be|) = (1 + o(1)) s
2t
n2 . Therefore by Lemma 2.1

Pr
(∣∣|Ae| − E(|Ae|)

∣∣ > aE(|Ae|)
)
≤ 2e−a

2E(|Ae|)/3 ≤ 2e−(1+o(1))a
2t/3` = o(1/n2). (3)

Here we used that a2t/3` ≥ 3 log n for a = o(1). Similarly using that ts2/n2 = ω(log n) we find

Pr
(∣∣|Be| −E(|Be|)

∣∣ > aE(|Be|)
)

= o(1/n2). Taking a union bound over all directed edges gives that

w.h.p. 1. and 2. hold for all e.

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let α = α(n) be some function tending to infinity arbitrarily slowly with n.

Suppose that p ≥ α6 log4 n/n and let ` = α3 log n, s = n/α2 log n be integers with n = m` + s.

Note that this gives m = (1 + o(1))n/α3 log n. Additionally set t = α5 log3 n. With these choices,

the hypothesis of Lemma 4.3 is satisfied. Let V(1), . . . ,V(t) be a collection of (`, s)-partitions of

X = [n], chosen so that the conclusions of Lemma 4.3 are satisfied. Therefore |Ae| = (1 + o(1))t/` =

(1 + o(1))α2 log2 n and |Be| = (1 + o(1))s2t/n2 = (1 + o(1))α log n for every e.
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To begin, whenever we expose the edges of a directed graph D ∼ D(n, p), we will assign the edges

of D among t edge disjoint subdigraphs D(1), . . . , D(t). The digraphs D(i) are constructed as follows.

For each edge e independently choose a random value h(e) ∈ Ae ∪ Be where an element in Ae is

selected with probability (1 − 1/α)/|Ae| and an element in Be is selected with probability 1/α|Be|.
For each i ∈ [t], we take D(i) to be the digraph given by D(i) = {e ∈ E(D) : h(e) = i}. We prove

that w.h.p. D(i) contains edge-disjoint Hamilton cycles covering almost all of its edges.

First note that all edges e of Dn(V(i)) appear independently in D(i). If e is an interior edge then

the probability that it appears is p(1 − 1/α)/|Ae| ≥ (1 − o(1))p/α2 log2 n := pin. Similarly, each

exterior edge e in Dn(V(i)) appears in D(i) with probability p/α|Be| ≥ (1 − o(1))p/α2 log n := pex.

Using these values, select F as in Lemma 4.1. Also set L = (1− o(1))mpin. Due to monotonicity we

conclude that for every i ∈ [t] we have

Pr(D(i) contains L edge disjoint Ham. cycles) ≥ Pr(F contains L edge disjoint Ham. cycles). (4)

Now we claim with these choices of pin and pex the hypothesis of Lemma 4.1 are satisfied. Indeed,

using p ≥ α6 log4 n/n gives

(1 + o(1))pin =
p

α2 log2 n
≥ α4 log2 n

n
= (1 + o(1))

α log n

m
,

and so pin = ω(log n/m). Similarly we have

pex = (1 + o(1))
p

α2 log n
= (1 + o(1))pin log n = (1 + o(1))

αmpin log n

s
,

and pex = ω(mpin log n/(m+s)). Thus by Lemma 4.1, Pr(F contains L edge disjoint Ham. cycles) =

1 − o(1). Summing over i ∈ [t] and combining with (4), this proves that w.h.p. D contains at least

(1−o(1))Lt = (1−o(1))mpint = (1−o(1)).n−s` .p`t .t = (1−o(1))np edge-disjoint Hamilton cycles.

5 Covering D(n, p) with Hamilton cycles

In this section we prove Theorem 1.2. To begin we first prove the following lemma. The proof

makes use of the max-flow min-cut theorem and the integrality theorem for network flows (see

Chapter 7 in [37]).

Lemma 5.1. Let G = (A,B,E) be a bipartite graph, with |A| = |B| = N and δ(G) ≥ d. Suppose

that G has the following properties:

• For any X ⊂ A, Y ⊂ B with |X| ≥ N
4 and |Y | ≥ N

4 we have eG(X,Y ) ≥ dN
40 ,

• For any X ⊂ A with |X| ≤ N
4 , if eG(X,Y ) ≥ 3d|X|

4 for some Y ⊂ B then |Y | ≥ 2|X|,

• For any Y ⊂ B with |Y | ≤ N
4 , if eG(X,Y ) ≥ 3d|Y |

4 for some X ⊂ A then |X| ≥ 2|Y |.

Then given any integer r with r ≤ d
80 and a bipartite graph H on vertex set A∪B with ∆ := ∆(H) ≤ r

2 ,

there exists a subgraph G′ of G which is edge disjoint from H such that G′ ∪H is r-regular.
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Proof. Given a graph F on V (G) and a vertex v of G, let dF (v) denote the degree of v in F . By

assumption, we have dH(v) ≤ r/2 for all v ∈ A ∪ B. We wish to find a subgraph G′ of G which is

edge-disjoint from H so that dG′(v) + dH(v) = r for all v ∈ V (G). We prove the existence of G′ by

representing it as a flow in an appropriate network.

Consider the following network D on vertex set V (G) ∪ {s, t}, with source s and sink t. For each

a ∈ A, the edge −→sa ∈ E(D) and it has capacity r − dH(a). For each b ∈ B, the edge
−→
bt ∈ E(D) and

it has capacity r − dH(b). Lastly, each edge in E(G \H) is directed from A to B and has capacity

1. Using the integrality theorem for network flows, it is sufficient to show that there is a flow from

s to t of value

V =
∑
a∈A

(r − dH(a)) = rN −
∑
a∈A

dH(a). (5)

By the max-flow min-cut theorem it is sufficient to show that D does not contain an s − t cut of

capacity less than V .

To see this, suppose for contradiction that {s} ∪ As ∪ Bs and At ∪ Bt ∪ {t} forms such a cut,

Av ⊂ A and Bv ⊂ B for v ∈ {s, t}. The capacity of this cut is

C =
∑
a∈At

(r − dH(a)) +
∑
b∈Bs

(r − dH(b)) + eG\H(As, Bt).

We may assume that |As| ≤ N/4 or |Bt| ≤ N/4. Indeed, otherwise from the statement of the lemma

we have eG(As, Bt) ≥ dN/40 and

C ≥ eG\H(As, Bt) ≥ eG(As, Bt)−∆N ≥ dN/40− rN/2 ≥ rN ≥ V,

since r ≤ d/80. We will focus on the case |As| ≤ N/4 as the case |Bt| ≤ N/4 follows from an identical

argument.

Note that since eG\H(As, B) ≥ (δ(G)−∆)|As| ≥ (d−∆)|As|, we find

eG\H(As, Bt) ≥ eG\H(As, B)− eG\H(As, Bs) ≥ (d−∆)|As| − eG(As, Bs). (6)

From (6) it follows that if eG(As, Bs) ≤ 3d|As|
4 then

C ≥
∑
a∈At

(r − dH(a)) + eG\H(As, Bt) ≥
∑
a∈At

(r − dH(a)) + (d−∆− 3d

4
)|As|

≥
∑
a∈At

(r − dH(a)) + r|As| ≥ V,

where the second last inequality holds since d/4 ≥ 2r ≥ ∆ + r and the last inequality holds by (5).

If eG(As, Bs) ≥ 3d|As|
4 , since |As| ≤ |A|/4, by the hypothesis of the lemma we have |Bs| ≥ 2|As|. But

then, since ∆ ≤ r/2 we have

C ≥
∑
a∈At

(r − dH(a)) +
∑
b∈Bs

(r − dH(b)) ≥
∑
a∈At

(r − dH(a)) + |Bs|(r −∆)

≥
∑
a∈At

(r − dH(a)) + 2|As| ×
r

2

≥
∑
a∈A

(r − dH(a)) = V.

This covers all cases, and completes the proof.
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We now prove a covering version of Lemma 4.1. In our proof of Theorem 1.2 we will again break

D ∼ D(n, p) into many sub-digraphs which are distributed similarly to F from Lemma 4.1. However

there will be some small fluctuation in the edge probabilities of edges in these sub-digraphs. The

slightly unusual phrasing of the next lemma is intended to allow for these fluctuations.

Lemma 5.2. Let V = (V0, V1, . . . , V`) be an (`, s)-partition of a set X of size n = m`+ s. Choose a

random subdigraph F of Dn(V) as follows:

• include each interior edge e from Dn(V) independently with probability qe ∈ (1± o(1))pin;

• include each exterior edge from Dn(V) independently with probability at least pex.

Then, provided pin = ω(log n/m) and pex = ω(log n/(m+ s)), with probability 1− o(1/n2) there are

(1 + o(1))mpin directed Hamilton cycles in F which cover all interior edges of F ∩Dn(V).

Proof. We begin by exposing the interior edges of F . For any j ∈ [`− 1], all of edges EDn(Vj , Vj+1)

appear in EF (Vj , Vj+1) independently with probability at least (1 − o(1))pin. For any j ∈ [` − 1],

let Fj be the subdigraph of F consists of the vertices Vj ∪ Vj+1 and the edges in EF (Vj , Vj+1)).

We again view Fj as a bipartite graph, simply by ignoring the orientations. As in Lemma 4.1,

with probability 1 − o(1/n2) for each j ∈ [` − 1] we can find L = (1 − o(1))mpin edge-disjoint

perfect matchings in EF (Vj , Vj+1), which we denote by {Mj,k}Lk=1. Now remove the edges of these

matchings from EF (Vj , Vj+1) and let Hj denote the remaining subdigraph. Since pin = ω(log n/m)

and q ∈ (1 + o(1))pin, by Chernoff’s inequality, with probability 1− o(1/n2) every vertex u ∈ Vj and

v ∈ Vj+1 satisfies

(1 + o(1))mpin ≤ d+Fj (u), d−Fj (v) ≤ (1 + o(1))mpin.

Therefore with probability 1− o(1/n2), for all j ∈ [`− 1], such u and v satisfy

d+Hj (u) = o(mpin) and d−Hj (v) = o(mpin). (7)

Now given X ⊂ Vj and Y ⊂ Vj+1 we also have E
(
eFj (X,Y )

)
= (1 ± o(1))|X||Y |pin. Chernoff’s

inequality therefore shows that

Pr
(∣∣eFj (X,Y )− (1± o(1))|X||Y |pin

∣∣ > t
)
≤ e−t2/4|X||Y |pin .

Using this bound it is easy to check that the following holds: with probability 1− nω(1), for all j ∈
[`−1] the hypothesis of Lemma 5.1 are satisfied by the bipartite graph Fj , taking d = (1−o(1))mpin
and N = m. Setting r = maxj∈[`−1]{2∆(Hj)}, from (7) we have r � d for all j ∈ [`− 1]. Therefore

by Lemma 5.1, with probability 1 − n−ω(1), for all j ∈ [` − 1] the graph Fj contains an r-regular

subgraph Gj which includes all edges of Hj .

Now by Hall’s theorem, for each j ∈ [` − 1] the digraph Gj can be decomposed into r edge-

disjoint perfect matchings, which we denote by {Mj,k}L+rk=L+1. Combined with the matchings at the

beginning of the proof, we have show that with probability 1− o(1/n2), for each j ∈ [`− 1] there are

perfect matchings {Mj,k}L+rk=1 which cover all interior directed edges of F . By combining the edges

{Mj,k}`−1j=1 for each k ∈ [L + r], we get m directed paths, each directed from V1 to V` and covering⋃`
i=1 Vi. Let Pk,1, . . . , Pk,m denote these paths and Pk = {Pk,1, . . . , Pk,m}. In particular these paths

cover all interior edges of F .
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Now to complete the proof we expose the exterior edges of F and use them to complete each Pk
into a directed Hamilton cycle as in the proof of Lemma 4.1. For each k ∈ [L+ r] let

Mk = {(uk,i, vk,i) ∈ V1 × V` : Pk,i is a directed uk,i − vk,i path}.

Now |V (F (Mk, V0))| = s + m and as in Lemma 4.1, F (Mk, V0) ∼ D(s + m, pex). Since pex =

ω(log n/(s + m)), the digraph F (Mk, V0) is Hamiltonian with probability 1 − o(1/n3). By Remark

2.9, this shows that with probability 1−o(1/n2), for all k ∈ [L+r] the digraph F contains a directed

Hamilton cycle containing all edges of the paths in Pk. As these paths cover all interior edges of F ,

this completes the proof of the lemma.

Proof of Theorem 1.2. The proof follows a similar argument to that of Theorem 1.1. Let α = α(n)

be some function tending arbitrarily slowly to infinity with n and let p ≥ α4 log2 n/n. Let n = m`+s

where ` = α, s = n/α and t = α2 log n. Note that m = (1 + o(1))n/α.

Since t = ω(` log n) we can take V(1), . . . ,V(t) to be a collection of (`, s)-partitions of X = [n]

as given by Lemma 4.3. To begin, whenever we expose the edges of a directed graph D ∼ D(n, p),

we will assign the edges among t sub-digraphs D(1), . . . , D(t). The digraphs D(i) are constructed as

follows. Let

Ae := {i ∈ [t] : e is interior in Dn(V(i))}.

By Lemma 4.3, w.h.p. for each edge e we have |Ae| = (1 +o(1))t/` = (1 +o(1)α log n. Independently

for each edge e choose a value h(e) ∈ Ae uniformly at random. For each i ∈ [t], let the digraph

D(i) contain the edges {e ∈ E(D) : h(e) = i}. Furthermore, adjoin all edges of D which occur as an

exterior edge of Dn(V(i)) to D(i). We will prove that w.h.p. D(i) contains directed Hamilton cycles

covering all the edges of D ∩Dn(V(i)).
First note that all edges e of Dn(V(i)) appear independently in D(i). If e is an interior edge then

the probability that it appears is p/|Ae| = (1± o(1))p/α log n = pin. We see that each interior edge

of Dn(V(i)) appears in D(i) independently with probability between (1− o(1))pin and (1 + o(1))pin.

Also, each exterior edge e in Dn(V(i)) appears in D(i) with probability pex := p. Now we have

pex = p = ω( lognm+s). We also have pin = (1 + o(1))p`t ≥
α2 logn

n = α logn
m , so pin = ω( lognm ). Thus by

Lemma 5.2 we obtain

Pr(D(i) has (1 + o(1))mpin directed Hamilton cycles covering its interior edges) ≥ 1− 1

n2
. (8)

Summing (8) over i ∈ [t], this proves that w.h.p. D contains (1+o(1))mpint = (1+o(1))np Hamilton

cycles covering the interior edges of D(i) for all i ∈ [t]. Since each edge of D occurs as an interior

edge of D(i) for some i ∈ [t], this completes the proof of the theorem.

6 Packing Hamilton cycles in pseudo-random directed graphs

6.1 Pseudo-random digraphs and Hamiltonicity

Definition 6.1. A directed graph D on n vertices is called (n, λ, p)-pseudo-random if the following

hold:

(P1) (1− λ)np ≤ d+D(v), d−D(v) ≤ (1 + λ)np for every v ∈ V (D);

(P2) For every X ⊆ V (D) of size |X| ≤ 4 log8 n
p we have eD(X) ≤ (1− λ)|X| log8.02 n;
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(P3) For every two disjoint subsets X,Y ⊆ V (D) of sizes |X|, |Y | ≥ log1.1 n
p we have eD(X,Y ) =

(1± λ)|X||Y |p.

The following theorem of Ferber, Nenadov, Noever, Peter and Skorić [13] gives a sufficient condi-

tion for pseudo-random digraph to be Hamiltonian.

Theorem 6.2. (Theorem 3.2, [13]) Let 0 < λ < 1/10. Then for p = ω( log
8 n
n ) the following holds.

Let D be a directed graph with the following properties:

(P1) (1− λ)np ≤ d+D(v), d−D(v) ≤ (1 + λ)np for every v ∈ V (D);

(P2)* for every X ⊆ V (D) of size |X| ≤ log2 n
p we have eD(X) ≤ |X| log2.1 n;

(P3)* for every two disjoint subsets X,Y ⊆ V (D) of sizes |X|, |Y | ≥ log1.1 n
p we have eD(X,Y ) ≤

(1 + λ)|X||Y |p.

Then D contains a Hamilton cycle.

6.2 Properties of pseudo-random graphs

The following lemmas will be useful in the proof of Theorem 1.4. We have deferred the proofs to

the Appendix. In these lemmas we assume that p = ω(log14 n/n), p′ = p/ log6 n, s =
√
n/αp′ and

m = s/ log n.

Lemma 6.3. Let D be a (n, λ, p)-pseudo-random digraph with 0 < λ < 1 and p = ω(log14 n/n).

We first select a random subdigraph C of D by including edges independently with probability q ∈
(1 ± o(1))p′/p. Then select an (`, s)-partition of V (D) given by V = (V0, V1, . . . , V`) uniformly at

random, with |V0| = s and n = m` + s. Then with probability 1 − o(1/n) the following holds: for

every collection M of m disjoint pairs from V1×V`, the random digraph F0 = C(M, V0) satisfies the

following properties:

(A) (1− 3λ)(s+m)p′ ≤ d+F0
(v), d−F0

(v) ≤ (1 + 3λ)(s+m)p′ for every v ∈ V (F0),

(B) we have eF0(X) ≤ |X| log2.1 n for every X ⊆ V (F0) of size |X| ≤ log2(s+m)
p′ ,

(C) for every two disjoint subsets X,Y ⊆ V (F0) of sizes |X|, |Y | ≥ log1.1(s+m)
p′ , we have

eF0(X,Y ) ≤ (1 + 2λ)|X||Y |p′.

Lemma 6.4. Let D be (n, λ, p) pseudo-random digraph with 0 < λ < 1/4 and p = ω(log14 n/n).

Suppose that V (D) = V0 ∪ V1 ∪ · · · ∪ V` is a random (`, s)-partition of V (D) with |V0| = s and

n = m` + s and let F be the graph obtained from D by keeping every interior edge with probability

pin = 1/(α` log n). Then with probability 1 − o(1/n), for every j ∈ [` − 1] the directed subgraph

Fj = EF (Vj , Vj+1) contains (1− 4λ)mp · pin edge disjoint perfect matchings.
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6.3 Proof of Theorem 1.4

To prove Theorem 1.4 we use the following lemma (the analogue of Lemma 4.1) about the existence

of many edge disjoint Hamilton cycles in special pseudo-random directed graphs.

Lemma 6.5. Let V = (V0, V1, . . . , V`) be an (`, s)-partition of a set X of size n = `m + s, chosen

uniformly and independently at random. Let D be an (n, λ, p) pseudo-random graph on the vertex

set X, with p = ω(log14 n/n), and 0 < λ < 1/100. Suppose that we select a random subdigraph F of

D(V) as follows:

• include each interior edge of D(V) independently with probability pin;

• include each exterior edge of D(V) independently with probability pex.

Then, provided pin = (1 − o(1)) · 1/(α` log n) and pex = n2/(α2s2`2 log n), where p′ = p/ log6 n,

s =
√
n/αp′, m = s/ log n and α = α(n) is some function tending arbitrarily slowly to infinity with

n, F contains (1− o(1))(1− 4λ)mppin edge-disjoint Hamilton cycles with probability 1− o(1/n).

Proof. To begin, look at the interior edges of F . For j ∈ [`− 1] all edges of ED(Vj , Vj+1) appear in

F independently with probability pin. Lemma 6.4 therefore gives that with probability 1 − o(1/t),
EF (Vj , Vj+1) contains L := (1−4λ)mppin edge-disjoint perfect matchings {Mj,k}Lk=1 for all j ∈ [`−1].

For each k ∈ [L], taking the union of the edges in the matchings
⋃`−1
j=1Mj,k gives m directed

paths, each directed from V1 to V` and covering
⋃`
i=1 Vi. Let Pk,1, . . . , Pk,m denote these paths and

Pk = {Pk,1, . . . , Pk,m}.
Now assign to each exterior edge e of D(V) a value h(e) ∈ [L] chosen uniformly at random, all

values chosen independently. Look at the exterior edges of F and for each i ∈ [L] let Hi denote the

subgraph of F with edge set {e ∈ E(F ) : e exterior with h(e) = i}.

Claim 6.6. For any k ∈ [L], the digraph Ck := {~e : ~e is a directed edge of some path is Pk}∪Hk

contains a directed Hamilton cycle with probability 1− o(1/n).

Note the proof of the lemma immediately follows from the claim, summing over k ∈ [L].

To prove the claim, let

Mk = {(uk,i, vk,i) ∈ V1 × V` : Pk,i is a uk,i − vk,i directed path}.

By Remark 2.9 it suffices to prove that the auxiliary digraph Ck(Mk, V0) contains a directed

Hamilton cycle. Now note that |V (Ck(Mk, V0))| = s+m. We now wish to prove that with probability

1 − o(1/n) every Ck(Mk, V0) is Hamiltonian. Observe that each Ck(Mk, V0) was created from

F (Mk, V0) by keeping each edge e with probability at least

pex/|L| =
n2

α2s2`2 log n
× 1

(1− o(1))mppin
.

Using that pin = (1− o(1))1/(α` log n), p′ = n/αs2 and that m` = (1− o(1))n gives that pex/|L| =
(1− o(1))p′/p.

By applying Lemma 6.3, we see that Ck(Mk, V0) satisfies properties (A), (B) and (C) with

probability 1− o(1/n). But (A), (B) and (C) give properties (P1), P (2)∗ and P (3)∗ from Theorem

6.2, taking p′ in place of p. Since p′ = (1 − o(1))p/ log6 n = ω(log8 n/n), by Theorem 6.2 any such

Ck(Mk, V0) are Hamiltonian. But if Ck(Mk, V0) is Hamitonian, then so is Ck. Thus, this proves

that Ck is Hamiltonian with probability 1− o(1/n).
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Now we are ready to prove Theorem 1.4.

Proof of Theorem 1.4. Let α = α(n) be some function tending arbitrarily slowly to infinity with n.

Let n = m`+ s where m = s/ log n and s =
√
n/αp′.

Let V(1), . . . ,V(t) be a collection of (`, s)-partitions of X = [n], where V(i) = (V
(i)
0 , . . . , V

(i)
` ),

chosen uniformly and independently at random and t = α`2 log n. We will assign the edges of D

among t edge disjoint subdigraphs D(1), . . . , D(t) such that each D(i) preserves some pseudo-random

properties. The digraphs D(i) are constructed as follows. Let

Ae := {i ∈ [t] : e is interior in D(V(i))}; Be := {i ∈ [t] : e is exterior in D(V(i))}.

By Lemma 4.3, w.h.p. for each edge e we have |Ae| = (1 + o(1)) t` and |Be| = ((1 + o(1)) s
2t
n2 . We will

now show that there exists a function f , f(e) ∈ Ae ∪ Be, such that if D(i) is the digraph given by

D(i) = {e : f(e) = i}, then D(i) contains L := (1− o(1))np/t directed Hamilton cycles. Clearly, this

will complete the proof.

For each edge e choose a random value f(e) ∈ Ae ∪Be where each element in Ae is selected with

probability (1 − 1/α)/|Ae| and each element in Be is selected with probability 1/α|Be|. For each

i ∈ [t], we take D(i) to be the digraph given by D(i) = {e : f(e) = i}. First note that all edges e of

D(V(i)) appear independently in D(i). If e ∈ E(D) is an interior edge then the probability that it

appears is (1− 1/α)/|Ae| ≥ (1− o(1))`/t = (1− o(1))1/α` log n := pin, since t = α`2 log n. Similarly,

each exterior edge e in D ∩D(V(i)) appears in D(i) with probability 1/α|Be| ≥ (1− o(1))n2/αts2 =

(1− o(1))n2/α2`2s2 log n := pex.

Now note that the conditions of Lemma 6.5 are satisfied with these values (with D(i) in place of

F ), so with probability 1−o(1/n), D(i) contains L = (1−o(1))(1−4λ)mppin edge disjoint Hamilton

cycles. Therefore with probability 1 − o(1), D(i) contains L edge disjoint Hamilton cycles for each

i ∈ [t]. Fix a choice of V(1), . . . ,V(t) and f such that this holds. Using that pint = ` this gives that

D contains (1 − o(1))Lt = (1 − 4λ − o(1))mppint = (1 − 4λ − o(1))mp` ≥ (1 − 5λ)np edge-disjoint

Hamilton cycles, as required.
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[32] L. Pósa. Hamiltonian circuits in random graphs. Discrete Mathematics, 14(4):359–364, 1976.

[33] G. N. Sárközy, S. M. Selkow, and E. Szemerédi. On the number of Hamiltonian cycles in dirac
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Appendix

Proof of Lemma 6.3. Recall that p = ω(log14 n/n) and p′ = p/ log6 n, s =
√
n/αp′, m = s/ log n,

where α = α(n) is some function tending arbitrarily slowly to infinity with n.

We will first prove (A). Note that for any choice ofM, and any vertex v ∈ V (F0) we have d+F0
(v) =

|N+
F0

(u)∩V1|+ |N+
F0

(u)∩V0| for some u ∈ V (D). Similarly d−F0
(v) = |N−F0

(w)∩V`|+ |N−F0
(w)∩V0| for

some w ∈ V (D). Let us thus estimate |N−F0
(v) ∩ Vi| for i ∈ {0, 1, `} and for every v ∈ V (D). Recall

that |N±D (v)| = (1 ± λ)np by Definition 6.1 (P1). As edges remain independently with probability

(1− o(1))p′/p and V is chosen uniformly at random, for every vertex v ∈ V (D) we have that

E(|N±F0
(v) ∩ Vi|) = (1− o(1))

p′

p

|Vi|
n
|N±D (v)| = (1± λ± o(1))|Vi|p′ = (1± 2λ)|Vi|p′,

But then by Chernoff’s inequality we have that

Pr(|N±F0
(v) ∩ Vi| /∈ (1± 3λ)|Vi|p′) ≤ 2e−

λ2|Vi|p
′

3 ≤ 2e−
λ2|Vi|p

′
4 ≤ 2e−

λ2 log2 n
4 = o(1/n3). (9)

The second last inequality holds since |Vi|p′ ≥ mp′ = sp′

logn =
√

np
α log6 n

· 1
logn �

√
log14 n
α log6 n

1
logn > log2 n.

By (9) this gives that with probability 1−o(1/n) we have d±F0
(v) = (1±3λ)(s+m)p′ for all v ∈ V (F0),

as required.

To see (B), note that for any M, each set X ⊂ V (F0) corresponds to a set X∗ ⊂ V (D) with

|X∗| ≤ 2|X|, obtained by ‘opening the pairs of X’, i.e. X∗ = (X \ M) ∪ {si, ti : (si, ti) ∈ X}.
Thus to prove (B) it suffices to show that with probability 1 − o(1/n), every set X∗ ⊂ V (D) with

|X∗| ≤ 2 log2(s+m)
p′ satisfies eF0(X∗) ≤ |X

∗| log2.1 n
2 .

Now for |X∗| ≤ 2 log2(s+m)
p′ since p′ = (1± o(1)) p

log6 n
, we have |X∗| ≤ 4 log8 n

p . From Definition 6.1

(P2) we have

eD(X∗) ≤ (1− λ)|X∗| log8.02 n ≤ (1− λ)|X∗| log8.05 n

2
.

We now want to estimate eF0(X∗). Since in F0, each edge from D is included independently with

probability (1 ± o(1))p′/p = (1±o(1))
log6 n

. By Lemma 2.3, since E(eF0(X∗)) = (1 ± o(1))eD(X∗)p′/p ≤
|X∗| log2.05 n/2 we have that

Pr

(
eF0(X∗) >

|X∗| log2.1(s+m)

2

)
≤
(

2e · eD(X∗)p′/p

|X| log2.1(s+m)

)|X| log2.1(s+m)

≤
(

40

log0.05 n

)|X| log2.1(s+m)

The final inequality here holds as log(s + m) ≥ log n/3 for s ≥
√
n/α(n) ≥ n1/3. But there are(

n
x

)
≤ ex logn sets of size |X∗| = x. Therefore

Pr
(
eF0(X∗) > |X∗| log2.1(s+m)/2 for some X∗

)
≤

m+s∑
x=1

ex logn
( 40

log0.05 n

)x log2.1(s+m)
= O

( 1

n2

)
.

This completes the proof of (B).
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To prove (C), first note that by averaging it suffices to prove (C) when X,Y ⊆ V (F0) are two

disjoint subsets with |X|, |Y | = k = d log
1.1 n
p′ e. Given any choice of M and such sets X and Y ,

let X∗ = (X \M) ∪ {ti | (si, ti) ∈ X} and Y ∗ = (Y \M) ∪ {si | (si, ti) ∈ Y }. Note that

|X| = |X∗| and |Y | = |Y ∗| and from (P3) of Definition 6.1 we have eF0(X,Y ) = eF0(X∗, Y ∗). Thus

to prove (C) for all choices of M, it suffices to prove that with probability 1 − o(1/n), we have

eF0(X∗, Y ∗) ≤ (1 + 2λ)|X∗||Y ∗|p′ for all disjoint sets X∗, Y ∗ ⊂ V (F0) with |X∗| = |Y ∗| = k.

To see this, note that for such X∗, Y ∗, from Definition 6.1 (P3) we have eD(X∗, Y ∗) = (1 ±
λ)|X∗||Y ∗|p. This gives that E(eF0(X∗, Y ∗)) = (1±λ± o(1))|X∗||Y ∗|p′ and by Chernoff’s inequality

we find

Pr (eF0(X∗, Y ∗)) > (1 + 2λ)|X∗||Y ∗|p′) ≤ e−
λ2|X∗||Y ∗|p′

6 = e−λ
2k2p′/6.

Thus the probability that eF0(X∗, Y ∗) > (1 + 2λ)|X||Y |p′ for some such pair is at most(
n

k

)2

e−
λ2k2p′

6 ≤ (ne−
λ2kp′

6 )k = o(1/n),

where the final equality holds by choice of k. This completes the proof (C).

We now give the proof of the Lemma 6.4 stated in Section 6.2.

Proof of Lemma 6.4. To prove the lemma, we will first show that with probability 1 − o(1/n), for

every j ∈ [`− 1] the digraph Fj satisfies the following properties:

(i) eFj (X,Y ) = (1± 2λ)|X||Y |p · pin for every two subsets X ⊆ Vj and Y ⊆ Vj+1 with |X|, |Y | ≥
k = d24 logn

λ2ppin
e,

(ii) eFj (X,Y ) ≤ min{|X|, |Y |} log2.05 n for all X ⊂ Vj and Y ⊂ Vj+1 with |X|, |Y | ≤ k,

(iii) d±(v, Vj+1) ≥ (1− 2λ)mp · pin for every v ∈ Vj .

We first prove (i). First note that by an easy averaging argument, it suffices to prove this for all

such sets X and Y with |X| = |Y | = k. Now as D is (n, λ, p) pseudo-random and k ≥ log1.1 n/p,

from property (P3) of Definiton 6.1 we have eD(X,Y ) = (1 ± λ)|X||Y |p for every such X and

Y . Let NX,Y be the number of edges in Fj [X,Y ]. Then NX,Y ∼ Bin(eD(X,Y ), pin) and thus

E(NX,Y ) = eD(X,Y )pin ≥ (1− λ)|X||Y |p · pin. By Chernoff’s inequality,

Pr (NX,Y /∈ (1± λ)eD(X,Y )pin) ≤ e−
λ2

3
(1−λ)|X||Y |p·pin ≤ e−

λ2k2ppin
6 .

By a union bound, this gives that

Pr (NX,Y /∈ (1± λ)eD(X,Y )pin for some pair X and Y ) ≤
(
m

k

)2

e−
λ2

3
(1−λ)|X||Y |p·pin ≤ n2ke−

λ2k2ppin
6

= (ne−
λ2kppin

12 )2k = o(1/n).

The final equality here holds by the definition of k.

Property (ii) holds immediately from property (P2) in Definition 6.1.

We now show (iii). From (P1) of Definition 6.1 we have that d±D(v) = (1± λ)np. Since for each

j ∈ [`−1] the set Vj+1 is chosen uniformly at random, the degree of v in Vj+1 is distributed according
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to the hypergeometric distribution with parameters n, d±D(v), |Vj+1|. By Chernoff’s inequality we

have

Pr

(
d±D(v, Vj+1) < (1− λ/2)

d±D(v)m

n

)
≤ e−

λ2d±D(v)m

6n ≤ e−
λ2

12
mp = o

(
1/n3

)
.

Therefore, with probability 1 − o(1/n) we have that for every j ∈ [` − 1] and v ∈ Vj we have

d±D(v, Vj+1) ≥ (1 − λ/2)mp. We now use this to estimate d±Fj (v) where v ∈ Vj . As in F every edge

appears independently with probability pin, by Chernoff’s inequality we have

Pr
(
d±F (v, Vj+1) < (1− 2λ)mppin

)
≤ e−

λ2mp·pin
6 = o(1/n2).

Thus with probability 1− o(1/n) we have that d±F (v, Vj+1) ≥ (1− 2λ)mp · pin, i.e. (iii) holds.

Using (i), (ii) and (iii) we can now complete the proof of the lemma. It suffices to show that Fj
contains an r-regular subgraph, where r = (1− 4λ)mp · pin. To see this, by the Gale-Ryser theorem,

it suffices to show that for all X ⊂ Vj and Y ⊂ Vj+1 we have

eF (X,Y ) ≥ r(|X|+ |Y | −m). (10)

Suppose that |X| = x and |Y | = y. It clearly suffices to work with the case when x+ y ≥ m. First

note that if x, y ≥ k then by (i) we have

eF (X,Y ) ≥ (1− 2λ)xyp · pin ≥ (1− 2λ)m(x+ y −m)p · pin > r(x+ y −m)

The second last inequality here holds since (m− x)(m− y) ≥ 0. It remains to prove that (10) holds

for X,Y satisfying x+ y ≥ m with either x ≤ k or y ≤ k. We will prove this for x ≤ k, as the other

case is identical. Since x+ y ≥ m, we have y ≥ m− x. But then |Y c| ≤ |X| ≤ k and

eF (X,Y ) = eF (X,Vj+1)− eF (X,Y c) ≥ (1− 2λ)xmp · pin − (|X|+ |Y c|) log2.05 n

≥ x(1− 2λ)mp · pin − 2x log2.05 n

= x(1− 4λ)mp · pin + x(2λmp · pin − 2 log2.05 n)

≥ x(1− 4λ)mp · pin ≥ r(x+ y −m).

The first inequality here holds by (ii) and (iii) and the third inequality holds since λmp · pin =

ω(log2.05n) (note that this is true provided p is a sufficiently large power of log n).
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